Course	Computational Vision Science
Course No.	02RB235
Credits	1.0Credits
Grade	1, 2Year
Timetable	SprAB Thu3
Instructor	Ko Sakai
Course Overview	The course is an introduction to the human vision, with specific interests on the
	computational mechanisms of the visual cortex. The course will cover elementary
	physiology and psychology, as well as computational algorithms.
Remarks	Identical to 01CH607.
Course Type	lectures
Course Remarks	The lecture will be given in Japanese language unless where English is required.
	Writings on blackboard and handouts will be given in English. Questions are
	welcome in either Japanese and English, and the answers will be given accord-
	ingly. The lecturer will talk with students whose native language is not Japanese
	and consider necessary measures. This class will not be given if the number of
	registrant is less than five.
Relationship to	Participants will learn the foundation of the computational aspects of cognition
EMP Educational	which will help understanding a variety of neural phenomena and designing ap-
Objectives	plications in engineering.
Course Objectives	Participants will learn the essence of neural computations which underlie visual
	functions.
Course Schedule	Fundamentals of
	visual neuroscience,
	visual psychophysics,
	computational neuroscience.
	Cortical representation of visual information.
	Computational mechanisms of visual functions.
Graduating Methods	Based on the quality of reports (80%) and discussion/participation (20%) in the
and Criteria	class.
Homework	Homework will be assigned every one to two weeks.
Textbook	Important slides will be given in advance as an online handout.
References	1. T. Trappenberg, "Fundamentals of Computational Neuroscience", 2009, Oxford
	2. A. Hyvrinen, et al., "Natural Image Statistics", Springer, 2009
	3. S. E. Palmer "Vison Science" MIT press
	4. Kandel, et al., "Principles of Neural Science" McGrawhill, 2014
	5. L. M. Chalupa & J. S. Werner (Ed) "The Visual Neuroscience" MIT, 2004
	6. R. Snowden, et al., "Basic Vision" Oxford,2006
	7. D. Purves, et al., "Principles of Cognitive Neuroscience", Sinauer
	8. J. M. Wolfe, et al, "Sensation and Perception", Sinauer
	9. J. P. Frisby & J. V. Stone "Seeing: the computational approach to biological
	vision", MIT
	10 S. Werner & L. M. Chalupa "The new visual neuroscience", MIT, 2014
	11. M. S. Gazzaniga "The Cognitive Neurosciences", MIT, 2009
	12. 3D shape, Pizlo, MIT, 2008
	All references are available in our library.

Office Hour	The office hour will be assigned at the first class.
	sakai at cs.tsukuba.ac.jp http://www.cvs.cs.tsukuba.ac.jp/~ko
Messages for Stu-	The lecturer will introduce a number of topics unfamiliar for students with back-
dents	ground of information science. The lecture is designed to provide opportunities
	that expose students to the world of cognitive neuroscience. Students are encour-
	aged to take good notes during lecture, and research the introduced topics by
	oneself following the homework problems.
Teaching Fellow /	
Teaching Assistant	
Keywords	vision, perception, brain, science, cognitive, neuroscience